Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Appl Netw Sci ; 7(1): 80, 2022.
Article in English | MEDLINE | ID: covidwho-2149046

ABSTRACT

Many countries that had early access to COVID-19 vaccines implemented vaccination strategies that prioritized health care workers and the elderly. As barriers to access eased, vaccine prioritization strategies have been relaxed. However, these strategies are still an important tool for decision makers to manage new variants, plan for future booster shots, or stage mass vaccinations. This paper explores the impact of vaccine prioritization strategies using networks that represent communities with different demographics and connectivity. The impact of vaccination is compared to non-medical intervention to reduce transmission. Several sources of uncertainty are considered, including vaccine willingness and mask effectiveness. This paper finds that while prioritization strategies can have a large impact on reducing deaths and peak hospitalization, selecting the best strategy depends on community characteristics and the desired objective. Additionally, in some cases random vaccination performs as well as more targeted prioritization strategies. Understanding these trade-offs is important when planning vaccine distribution.

2.
PLoS One ; 16(4): e0249726, 2021.
Article in English | MEDLINE | ID: covidwho-1186606

ABSTRACT

As social distancing policies and recommendations went into effect in response to COVID-19, people made rapid changes to the places they visit. These changes are clearly seen in mobility data, which records foot traffic using location trackers in cell phones. While mobility data is often used to extract the number of customers that visit a particular business or business type, it is the frequency and duration of concurrent occupancy at those sites that governs transmission. Understanding the way people interact at different locations can help target policies and inform contact tracing and prevention strategies. This paper outlines methods to extract interactions from mobility data and build networks that can be used in epidemiological models. Several measures of interaction are extracted: interactions between people, the cumulative interactions for a single person, and cumulative interactions that occur at particular businesses. Network metrics are computed to identify structural trends which show clear changes based on the timing of stay-at-home orders. Measures of interaction and structural trends in the resulting networks can be used to better understand potential spreading events, the percent of interactions that can be classified as close contacts, and the impact of policy choices to control transmission.


Subject(s)
COVID-19/epidemiology , Cell Phone , Contact Tracing , Algorithms , Humans , Physical Distancing , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL